Anatomy of Subsidence in Tianjin from Time Series InSAR

نویسندگان

  • Peng Liu
  • Qingquan Li
  • Zhenhong Li
  • Trevor Hoey
  • Guoxiang Liu
  • Chisheng Wang
  • Zhongwen Hu
  • Zhiwei Zhou
  • Andrew Singleton
چکیده

Groundwater is a major source of fresh water in Tianjin Municipality, China. The average rate of groundwater extraction in this area for the last 20 years fluctuates between 0.6 and 0.8 billion cubic meters per year. As a result, significant subsidence has been observed in Tianjin. In this study, C-band Envisat (Environmental Satellite) ASAR (Advanced Synthetic Aperture Radar) images and L-band ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band Synthetic Aperture Radar) data were employed to recover the Earth’s surface evolution during the period between 2007 and 2009 using InSAR time series techniques. Similar subsidence patterns can be observed in the overlapping area of the ASAR and PALSAR mean velocity maps with a maximum radar line of sight rate of ~170 mm ̈ year ́1. The west subsidence is modeled for ground water volume change using Mogi source array. Geological control by major faults on the east subsidence is analyzed. Storage coefficient of the east subsidence is estimated by InSAR displacements and temporal pattern of water level changes. InSAR has proven a useful tool for subsidence monitoring and displacement interpretation associated with underground water usage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Land Subsidence Spatio-temporal Variation Analysis Based on Multiple Source Data Field in Tianjin, China

Land Subsidence is a kind of slow evolution geological hazards which needs effective way to monitor. The causal and developmentsof land subsidence are complex. The monitor of land subsidence is also difficulty. So it is hard to analyze it in independent data source. This paper uses multiple source data to extract the high temporal and spatial resolution result. The deformations of land surface ...

متن کامل

Ultrashort-baseline Persistent Scatterer Radar Interferometry for Subsidence Detection

This paper presents an improved approach of multi-temporal interferometric synthetic aperture radar (InSAR) for detecting land subsidence phenomena by using time series of high resolution SAR images. Our algorithm extends the capability of the temporarily coherent point (TCP) InSAR technique proposed previously to detect subsidence even in the case of a small number of SAR images available for ...

متن کامل

Monitoring of Subsidence along Jingjin Inter-City Railway with High-Resolution TerraSAR-X MT-InSAR Analysis

Synthetic Aperture Radar Interferometry (InSAR), widely applied for the monitoring of land subsidence, has the advantage of high accuracy and wide coverage. High-resolution SAR data offers a chance to reveal impressive details of large-scale man-made linear features (LMLFs) with Multi-temporal InSAR (MT-InSAR) analysis. Despite these advantages, research validating high-resolution MT-InSAR resu...

متن کامل

Evaluation of land subsidence in Kashmar-Bardaskan plain, NE Iran

The development of agriculture and industry and the increase of population in countries with arid to semi-arid climates have led to more harvesting of groundwater resources and as a result land subsidence in different parts of the worlds. Decades of groundwater overexploitation in the Kashmar-Bardaskan plain in the north-east of Iran has resulted substantial land subsidence in this plain. The p...

متن کامل

L- and X-Band Multi-Temporal InSAR Analysis of Tianjin Subsidence

When synthetic aperture radar interferometry (InSAR) technology is applied in the monitoring of land subsidence, the sensor band plays an important role. An X-band SAR system as TerraSAR-X (TSX) provides high resolution and short revisit time, but it has no capability of global coverage. On the other side, an L-band sensor as Advanced Land Observing Satellite-Phased Array L-band Synthetic Apert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016